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Substituent Effects in the Diastereoselective [4+2] Cycloaddition of 
Chiral Naphthalene Derivatives with Singlet Oxygen 

Waldemar Adam* and Michael Prein 

A bsfracf: From 1 -bromo4-methylnaphthalene eight chiml derivatives 1 with a variety of 
functional groups at the stereo&e& center were prepcued, which with singlet oxysen led to 
the corresponding endoperoxides 2 in substituenr-dependent n7facial selectivity of 
stereoelectronic origin. 

The effect of adjacent stereogenic centers on the diastereoselectivity of [4+2] cycloadditions has 

recently attractedconsiderable synthetic 1 and theoretical 2 interest. Whereas 5-substituted cyclopentadienes 
A generally exhibit high r-facial selectivity ta, to date comparatively little is known on the extent and sense of 
the diastereoselectivity for chiral open-chain 1 b B , semicyclic *C C, and also arene-type 3~ dienes D. 
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In the context of our work on the diastereuselective oxyfunctionalizationof unsaturated compounds 

by singlet oxygen 3, we recently discovered that chiral naphthyl alcohols (e.g. la, X = OH) give on photo- 

oxygenation the corresponding endoperoxides (Scheme 1, X = OH) in good diastereoselectivities (d.r. 2 $5 : 
15). Naphthalene derivatives were chosen as model compounds since they give the desired endoperoxides in 

high yields 4 (2 95 96) without mmplications by the ene process (Schenck &on 5), which allows to make 

more reliable conclusions on the steezing pmpensity of the substituent at the smgenic center. 

1 

Scheme 1. 

433 1 



4332 

It was of intemst to explore whether other functional groups at the stereogenic center also induce high 

diastereoselectivities. For this purpose, we prepared from l-bromo-4-methylnaphthalenea series of eight 

chiral naphthakne derivatives 1 with a variety of functional groups at the chirality center (Scheme 2). We 
chose the alcohol derivatives 1 b-d in order to compare their steering propensity to the parent alcohol la, 
while the hydrocarbon le and its silicon snalogon 1 f should provide closer insight into the mlative 

importance of steric and electtonic effects on the x-facial selectivity. Finally, the halo derivatives 1 g , h were 
of particular interesk since apparently little is known on the x-facial selectivity 6 in [4+2] cycloadditionS of 

substrates with c~fo~a~~ly flexible, h~og~-su~~~ stereogenie centers. 
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(i) M&HO, THF. 0 *C to RT, 4 h. 68 46: (ii) HCI (g), CaC+, EbO. RT, 8h, 92 96; (iii) Mg @owder),ClSiMe~. 

THF, RT. lh, 48 % (ref. 7); (iv) PBr> tohme, RT, 20 h. 91 96; (v) MeOH, RT, 14 h. 91 W; (vi) +O, pyridine, 

RT, 18 h, 92 W; (vii) tBuCUCl, THF, 0 *C m RT, 18 ti; (viii) MeMgI, EtzO, rcflux, 10 h; (ix) %, Pd-C, HO&, 

HCiO4.40 “c, 1 h, ovemIi 38 %; (x) ClSihp*j, ale, CH2Cl2, RT, 36 h. 89 %. 

Scheme 2. 

Photooxygenation * of the naphthalene derivatives 1 at -30 ‘C! gave the respective endoperoxides 2 in 
very high yields (Scheme 1). The diastereomeric ratio of the products was established by NMR spectmscopy 

on the crude product mixtures, the results am summarized in Table 1 9. 

Unfortunately, due to the inherent thermal lability 4~10 of the endoperoxides 2, for derivatives 2c,e- h 
(entries 3~5-8) their relative stereochemistry could not be assigned; nevertheless, several impottant 

~hanjstic~nclusions can be drawn from the present results. Thus, e~~~-~p~g groups in the 

benzylic position, e.g. X = OAc and Cl in the naph~~ene derivatives Z b,g, reduce the reactivity, as 

reflected in the relatively long photooxygenation times, i.e. 12- 14 h (entries 2 and 7). Furthermore, steric 
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crowding, e.g. X = OSiMe3 and tBu in the naphthalene dezivatives ld,e, also dtcnasts the rate of 

p~~~ygenati~ (entries 4 and 5); however the E&3Si su~tu~tin 1 f, despite its size, enh~~s~~ 

(entry 6) ‘I and is, in fact, the fastest of the substrates investigated herein. 

Table 1: Diastereoselectivities in the Photooxygenation ofthe Chiral Naphthalcnes la) 

time COIlV. *ldb) 
@=v substrate substituent (ft) (W (%) d.r, (5%) =) 

1 la <ref. 3e) OH 4 >98 298 85:15f3d) 

2 lb (ref. 3e) OAc 14 37 95 55:45*3d~ 

3 IC 7 87 298 66:34*3=) 

4 Id OSiieg 7 98 ~98 58:42~k3~) 

5 le tBU 6 30 95 66:34*3e) 

6 If sih4e3 3.5 >98 9s 95: 5*3ej 

7 lg Cl 12 9s >98 87: 13f3e) 

8 lb Br 4 98 98 95: 5*3e) 
a) Photooxygenations were carriedout at - 30 *C in CDCl3 with teirapheayIporphine(TPP) as xensitiw. NMR spectsawae 
taken on the crudeproduct mixtum at - 20 “C; b) yield of the wrqxmding~ 2; c) U ratio (dr.) of tl~ 
isomeric endopemxidext; d) (uR*.lR*,QS*)- 2 as major isomw, c) due to the thermal lability of the w 2. the 
relative stereochemistry could not be assigned. 

In regard to the ~~t~l~~~ of the singlet oxygen [4+2] deletion, it becomes clear that 

any fu~tio~~ti~n of the free hydroxy fu~tion~i~, either by electron acceptors, e.g. 1 b (cnuy 21, or by 

electron donors, e.g. Ic,d (entries 3 and 41, leads to a substantial dmp in the diaskteoselectivity. These 
findings cleaTly substantiate our previous mechanistic rationaIization3~ that the hydroxy group is zsponsible 

for observed r-facial selectivity in the chirai alcohol la (entry 1) by association with the in&g 

electmphilic singlet oxygen dienophile, Minimization of peri strain dictates the conformationally preferred 
transition state and, consequentely, the observed stereochemical differentiation. 

The poor 66 : 34 selectivity in the photooxygenation of tert-butyl-substituted naphthalene 1 e (entry 5) 
ckarly demonstrates that steric bias alone is not suffkient to induce a h&h x-facial selectivity. In contrast, the 

~3Si-su~titu~ analogon 1 I (entry 6) shows very high di~te~os~~ti~~, which emphasizes the 

importance of electronic effects 12 in the diastewktive [4+2] cycloadditkn~; however, the origin of such 

subtle stereo&ctronic factors for singlet oxygen as dienophile would require theo&cal scrutiny at a rather 

mistier ~u~ti~~ level. 

The importance of electronic effects in the diastetzoselective [4+2] cycloaddition of singlet oxygen is 

further substantiated by the results for the halogen-substituted derivatives lg,h (entrles7 and 81, which both 
show even higher n-facial selectivity than the alcohol la. Unfortunately, since the stereochemistry of 

endoperoxides 2 g , h could not be assigned in view of their thermal lability 13, rationalization of the observed 

high ~~~1~~~ would be too speculative at this point. None~ele~, whatever the s 
outcome, the chiral naphthalenes investigated herein unequivocally establish that stereoelectronic and not 

steric effects dictate the extent of n-facial selectivity in the singlet oxygen [4+2] cycloaddition. It should be of 

mechanistic import to probe whether these novel stereoelecuonieeffects, discovered for the arenes D, also 
operate in the cyciic, open-chain , and semicyclic 1.3 dienic substrates A-C. It is hoped that the nsuking 

endopemxides are sufficiently persistent to permit stereochemical assignment. 
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